ICS 202 Lab 10 – Graphs
Objectives:
· Study the AdjacencyMatrix and AdjacencyList representation of graphs.
· Study the implementation of Graph traversals.
· Study the implementation of Dijkstra’s single source shortest path algorithm.

Outcomes:
After completing this lab, students will know:
· How to represent graphs using AdjacencyMatrix and AdjacencyList representations.
· How to traverse graphs using DFS and BFS traversals.
· How to use the BFS traversal to solve the reachability problem.
· How to implement Dijkstra’s single source shortest path algorithm and how to use the algorithm to solve a given shortest path problem.

Submissions: Submit, in your lab section Blackboard, the Java files for each of the lab task is a separate folder, named as: Task01, Task02, Task03, and Task04. Zip all the folders in a single zip file named in the format:
 LabSectionNumber_Lab10_KFUPMID_FamilyName
Example:
 52_Lab10_200000000_AlHashim
Note:
· For Task04, you are also required to submi a word document containing the table of the manual tracing of Dijkstra’s single source shortest path algorithm , together with the diagram of the Shortest Path Graph (SPG).
· Follow the submission deadline given by your lab instructor.

Lab Activity 01: Graph representations
Study the different graph representations in the folder LabActivity01_GraphRepresentations.

Lab Activity 02: Graph Traversals
Study the different graph traversal implementations in the folder LabActivity02_GraphTraversals.

Lab Task01: Consider the adjacency matrix representation given below:
[image:]
In the following lab task you are required to modify the Graph.java in the folder LabTask01 such that it represents a graph using adjacency matrix representation similar to the above representation.
(a) Complete the method: public void addEdge(int i, int j) to add an undirected edge i --- j to the graph.
Note: For an undirected graph, if an edge i --- j is added to the graph then the reverse edge j --- i must also be added.
(b) Complete the method: public void removeEdge(int i, int j) to remove an undirected edge i --- j from the graph
Note: For an undirected graph, an edge i --- j is removed from the graph then the reverse edge j --- i must also be removed.
(c) Complete the method: public boolean isEdge(int i, int j). The method returns true if i --- j is an undirected edge in the graph; otherwise, it returns false.
(d) Complete the driver class by creating the following graph:
 [image:]
 Run the program to get an output of the following form:
 [image:]
Lab Task02: Consider the graph represented in the folder: Task02\GraphyAsAdjacencyList. The output of the program is:
 [image:]
Modify the program such that the vertices 0, 1, 2, 3, and 4 are mapped to vertices A, B, C, D, and E and the output of the program becomes:
[image:]
Hint: In the driver class, declare an array labels of Strings:
	0
	1
	2
	3
	4

	"A "
	"B "
	"C"
	"D"
	"E"

Pass this array to the Graph constructor:
Graph g = new Graph(5, labels);
Modify the instance variables and Constructor of Graph.java as follows:
 int numVertices;
 LinkedList<String>[] adjacencyList;
 String[] labels;

 Graph(int numVertices, String[] labels) {
 this.labels = labels;

 this.numVertices = numVertices;
 adjacencyList = new LinkedList[numVertices];

 for (int i = 0; i < adjacencyList.length; i++)
 adjacencyList[i] = new LinkedList<String>();
 }

Then modify the following methods of Graph.java accordingly:

 //To add a directed edge to graph
 void addDirectedEdge(int v, int w) {
 // To be completed by students
 }

 //To add undirected edge to graph
 void addUndirectedEdge(int v, int w) {
 // to be completed by students
 }

 void displayGraph(){
 // to be completed by students

 }

Lab Task 03:
Complete the Graph.java method: private boolean isReachable(int src, int dest, boolean[] visited) in the folder Task03 such that it returns true if the destination vertex dest is reachable from the source vertex src; otherwise, it returns false.

Complete the test program to prompt for and read the source and destination vertices. It then checks whether the destination vertex is reachable from the source vertex. [Note: Assume that the values read are valid.]

Sample program runs:
	[image:]

	[image:]

Lab Task 04: Dijkstra’s single source shortest path algorithm

Manually trace Dijkstra’s single source shortest path algorithm on the graph below, using the given table. Verify your answer by creating the graph in the main method of DijkstraAdjacencyMatrix.java and then invoking the dijkstra_GetMinDistances(int sourceVertex) method of DijkstraAdjacencyMatrix.java
[image:]
	Pass:
	initial
	1
	2
	3
	4
	5
	6
	shortest distance
	predecessor

	Active vertex:
	
	
	
	
	
	
	
	
	

	0
	
	
	
	
	
	
	
	
	

	1
	
	

	
	
	
	
	
	
	

	2
	
	

	
	
	
	
	
	
	

	3
	
	
	
	
	
	
	
	
	

	4
	
	
	
	
	
	
	
	
	

	5
	
	
	
	
	
	
	
	
	

Draw the Shortest Path Graph (SPG):

Note: The output of your program must be:
[image:]
Page 2 of 2

image4.png
The directed graph is:

8 ----> [2, 3]

1 ----> [e, 4]

2 ----> [1]

3 > [1]

4 -5 (]

The undirected graph is:
@ ----> [1, 2, 3]
1---->[e, 2, 4]

2 > [0, 1]

3 ----> [e]
4 ----> [1]

image5.png
The directed graph is:

A ----> [C, D]

B ----> [A, E]

C ----> [B]

D > []

E----> 1]

The undirected graph is:
A ----> [B, C, D]

B ----> [A, C, E]

c > [A, B]

D ----> [A]
E ----> [B]

image6.png
Enter the source vertex [0 - 7]: 2
Enter the destination vertex [0 - 7]: 3
No path exists between vertices 2 and 3

image7.png
Enter the source vertex [0 - 7]: 1
Enter the destination vertex [0 - 7]: 7
Path exists from vertex 1 to vertex 7

image8.png

image9.png
Dijkstra Algorithm:

Source Vertex:
Source Vertex:
Source Vertex:
Source Vertex:
Source Vertex:
Source Vertex:

]

]
]
]
]
]

to
to
to
to
to
to

(Adjacency Matrix)
© distance:
1 distance:
2 distance:
3 distance:
4 distance:
5 distance:

vertex
vertex
vertex
vertex
vertex
vertex

PONUVAO

image1.png
w o o= o

0
true
true
false
true

1

false
false
false
false

2
true
false
false
true

3
false
false
true
false

image2.png

image3.png
Before deleting edge 2---3 the graph is

]
1
2
3

]
false
true
true
true

1 2
true true
false false
false false
true true

After deleting edge 2---3 the graph is

wN R e

]
false
true
true
true

1 2
true true
false false
false false
true false

true
true
true
false

true
true
false
false

